Chapter Review

- parallel lines, p. 129
- skew lines, p. 129
- parallel planes, p. 129
- transversal, p. 131
- corresponding angles, p. 131
- alternate exterior angles,
- p. 131
- alternate interior angles, p. 131 consecutive interior angles, p. 131
- same side interior angles,
- p. 131
- flow proof, p. 136

LINES AND ANGLES

Examples on pp. 129-131

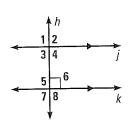
EXAMPLES In the figure, $j \parallel k, h$ is a transversal, and $h \perp k$.

 $\angle 1$ and $\angle 5$ are corresponding angles.

 $\angle 3$ and $\angle 6$ are alternate interior angles.

 $\angle 1$ and $\angle 8$ are alternate exterior angles.

 $\angle 4$ and $\angle 6$ are consecutive interior angles.



Complete the statement. Use the figure above.

1. $\angle 2$ and $\angle 7$ are $\underline{}$ angles.

2. $\angle 4$ and $\angle 5$ are $\underline{?}$ angles.

Use the figure at the right.

3. Name a line parallel to \overrightarrow{DH} .

4. Name a line perpendicular to \overrightarrow{AE} .

5. Name a line skew to \overrightarrow{FD} .



PROOF AND PERPENDICULAR LINES

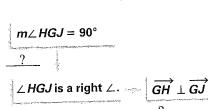
Examples on pp. 136-138

GIVEN \triangleright $\angle 1$ and $\angle 2$ are complements.

PROVE $\overrightarrow{GH} \perp \overrightarrow{GJ}$

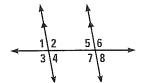
∠1 and ∠2 are complements.

 $m \angle 1 + m \angle 2 = 90^{\circ}$ $m \angle 1 + m \angle 2 = m \angle HGJ$



6. Copy the flow proof and add a reason for each statement.

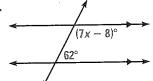
EXAMPLE In the diagram, $m \angle 1 = 75^{\circ}$. By the Alternate Exterior Angles Theorem, $m \angle 8 = m \angle 1 = 75^{\circ}$. Because $\angle 8$ and $\angle 7$ are a linear pair, $m \angle 8 + m \angle 7 = 180^{\circ}$. So, $m \angle 7 = 180^{\circ} - 75^{\circ} = 105^{\circ}$.



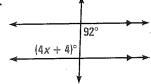
7. Find the measures of the other five angles in the diagram above.

Find the value of x. Explain your reasoning.

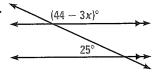
8



9.



10.



PROVING LINES ARE PARALLEL

Examples on pp. 150–152

EXAMPLE

GIVEN $m \angle 3 = 125^{\circ}, m \angle 6 = 125^{\circ}$

PROVE ≈ ℓ | m

Plan for Proof: $m \angle 3 = 125^{\circ} = m \angle 6$, so $\angle 3 \cong \angle 6$. So, $\ell \parallel m$ by the Alternate Exterior Angles Converse.

1 2 5 6 7 8

Use the diagram above to write a proof.

11. GIVEN $m \angle 4 = 60^{\circ}, m \angle 7 = 120^{\circ}$

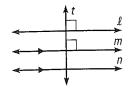
12. GIVEN \triangleright $\angle 1$ and $\angle 7$ are supplementary.

PROVE $\gg \ell \parallel m$ PROVE $\gg \ell \parallel m$

Using Properties of Parallel Lines

Examples on pp. 157–159

EXAMPLE In the diagram, $\ell \perp t$, $m \perp t$, and $m \parallel n$. Because ℓ and m are coplanar and perpendicular to the same line, $\ell \parallel m$. Then, because $\ell \parallel m$ and $m \parallel n$, $\ell \parallel n$.



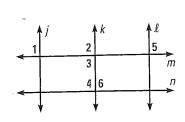
Which lines must be parallel? Explain.

13. $\angle 1$ and $\angle 2$ are right angles.

14. ∠3 ≅ ∠6

15. $\angle 3$ and $\angle 4$ are supplements.

16. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 5$

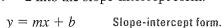


EXAMPLES slope of
$$\ell_1 = \frac{2-0}{1-0} = 2$$

slope of
$$\ell_2 = \frac{3 - (-1)}{5 - 3} = \frac{4}{2} = 2$$

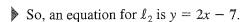
The slopes are the same, so $\ell_1 \parallel \ell_2$.

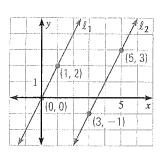
To write an equation for ℓ_2 , substitute (x, y) = (5, 3)and m = 2 into the slope-intercept form.



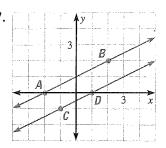
$$3 = (2)(5) + b$$
 Substitute 5 for x, 3 for y, and 2 for m.

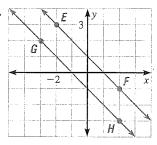
$$-7 = b$$
 Solve for b .

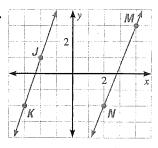




Find the slope of each line. Are the lines parallel?







20. Find an equation of the line that is parallel to the line with equation y = -2x + 5 and passes through the point (-1, -4).

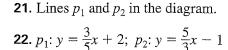
ERPENDICULAR LINES IN THE COORDINATE PLANE

Examples on pp. 172–174

EXAMPLE The slope of line j is 3. The slope of line k is $-\frac{1}{3}$.

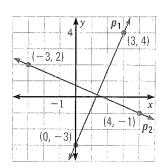
$$3\left(-\frac{1}{3}\right) = -1, \text{ so } j \perp k.$$

In Exercises 21-23, decide whether lines p_1 and p_2 are perpendicular.



23
$$n : 2v - r = 2$$
: $n : v + 2r = 4$

23.
$$p_1$$
: $2y - x = 2$; p_2 : $y + 2x = 4$



24. Line ℓ_1 has equation y = -3x + 5. Write an equation of line ℓ_2 which is perpendicular to ℓ_1 and passes through (-3, 6).