
EXAMPLE 5 Using Linear Pairs

In the diagram, $m \angle 8 = m \angle 5$ and $m \angle 5 = 125^{\circ}$. Explain how to show $m \angle 7 = 55^{\circ}$.


SOLUTION

Using the transitive property of equality, $m \angle 8 = 125^{\circ}$. The diagram shows $m \angle 7 + m \angle 8 = 180^{\circ}$. Substitute 125° for $m \angle 8$ to show $m \angle 7 = 55^{\circ}$.

THEOREM

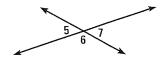
THEOREM 2.6 Vertical Angles Theorem

Vertical angles are congruent.

$$\angle 1 \cong \angle 3$$
, $\angle 2 \cong \angle 4$

STUDIENT BIEBE

L▶ Study Tip


Remember that previously proven theorems can be used as reasons in a proof, as in **Step 3** of the proof at the right.

EXAMPLE 6

Proving Theorem 2.6

GIVEN \triangleright $\angle 5$ and $\angle 6$ are a linear pair, $\angle 6$ and $\angle 7$ are a linear pair

PROVE $\searrow \angle 5 \cong \angle 7$

Statements

- **1.** $\angle 5$ and $\angle 6$ are a linear pair, $\angle 6$ and $\angle 7$ are a linear pair
- **2.** $\angle 5$ and $\angle 6$ are supplementary, $\angle 6$ and $\angle 7$ are supplementary
- **.3.** ∠5 ≅ ∠7

Reasons

- 1. Given
- 2. Linear Pair Postulate
- 3. Congruent Supplements Theorem

GUIDED PRACTICE

Vocabulary Check V

1. "If $\angle CDE \cong \underline{?}$ and $\angle QRS \cong \angle XYZ$, then $\angle CDE \cong \angle XYZ$," is an example of the $\underline{?}$ Property of Angle Congruence.

2. To close the blades of the scissors, you close the handles. Will the angle formed by the blades be the same as the angle formed by the handles? Explain.

Skill Check 🗸

3. By the Transitive Property of Congruence, if $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\underline{?} \cong \angle C$.

In Exercises 4–9, $\angle 1$ and $\angle 3$ are a linear pair, $\angle 1$ and $\angle 4$ are a linear pair, and $\angle 1$ and $\angle 2$ are vertical angles. Is the statement true?

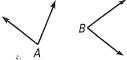
4.
$$\angle 1 \cong \angle 3$$

5.
$$\angle 1 \cong \angle 2$$

6.
$$\angle 1 \cong \angle 4$$

7.
$$\angle 3 \cong \angle 2$$

9.
$$m \angle 2 + m \angle 3 = 180^{\circ}$$


PRACTICE AND APPLICATIONS

STUDENT HELP

Extra Practice to help you master skills is on p. 806. **10.** PROVING THEOREM 2.2 Copy and complete the proof of the Symmetric Property of Congruence for angles.

GIVEN $> \angle A \cong \angle B$

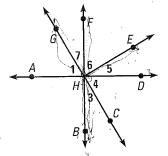
 $\mathsf{PROVE} \ \trianglerighteq \ \angle B \cong \angle A$

Statements	Reasons
1. $\angle A \cong \angle B$	1?
2. ?	2. Definition of congruent angles
3. $m \angle B = m \angle A$	3 ?
4. $\angle B \cong \angle A$	4 ?

11. PROVING THEOREM 2.2 Write a two-column proof for the Reflexive Property of Congruence for angles.

FINDING ANGLES In Exercises 12–17, complete the statement given that $m\angle EHC = m\angle DHB = m\angle AHB = 90^{\circ}$

12. If
$$m \angle 7 = 28^{\circ}$$
, then $m \angle 3 = \underline{?}$.


13. If
$$m \angle EHB = 121^\circ$$
, then $m \angle 7 = \underline{?}$.

14. If
$$m \angle 3 = 34^{\circ}$$
, then $m \angle 5 = \underline{?}$.

15. If
$$m \angle GHB = 158^{\circ}$$
, then $m \angle FHC = ?$

16. If
$$m \angle 7 = 31^{\circ}$$
, then $m \angle 6 = \underline{?}$.

17. If
$$m \angle GHD = 119^{\circ}$$
, then $m \angle 4 = \frac{?}{}$.

18. PROVING THEOREM 2.5 Copy and complete the proof of the Congruent Complements Theorem.

GIVEN
$$\angle 1$$
 and $\angle 2$ are complements,
 $\angle 3$ and $\angle 4$ are complements,
 $\angle 2 \cong \angle 4$

 $\mathbf{PROVE} \trianglerighteq \angle 1 \cong \angle 3$

Statements

STUDENT HELP

→ HOMEWORK HELP

Example 1: Exs. 10, 11

Example 2: Exs. 12-17

Example 3: Exs. 12–17

Example 4: Exs. 19–22

Example 5: Exs. 23–28

Example 6: Exs. 23–28

1. $\angle 1$ and $\angle 2$ are complements, $\angle 3$ and $\angle 4$ are complements, $\angle 2 \cong \angle 4$

2. ? ?

3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$

4. $m \angle 2 = m \angle 4$

5. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$

6. $m \angle 1 = m \angle 3$

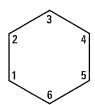
7. _ ?__


Reasons

- 1. _ ?
- 2. Def. of complementary angles
- **3.** Transitive property of equality
- 4. __?_
- **5.** _ ?__
- 6. __?__
- 7. Definition of congruent angles

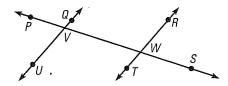
FINDING CONGRUENT ANGLES Make a sketch using the given information. Then, state all of the pairs of congruent angles.

- **19.** $\angle 1$ and $\angle 2$ are a linear pair. $\angle 2$ and $\angle 3$ are a linear pair. $\angle 3$ and $\angle 4$ are a linear pair.
- **20.** $\angle XYZ$ and $\angle VYW$ are vertical angles. $\angle XYZ$ and $\angle ZYW$ are supplementary. $\angle VYW$ and $\angle XYV$ are supplementary.
- **21.** $\angle 1$ and $\angle 3$ are complementary. $\angle 4$ and $\angle 2$ are complementary. $\angle 1$ and $\angle 2$ are vertical angles.
- **22.** $\angle ABC$ and $\angle CBD$ are adjacent, complementary angles. $\angle CBD$ and $\angle DBF$ are adjacent, complementary angles.


WRITING PROOFS Write a two-column proof.

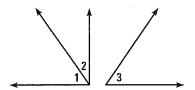
23. GIVEN $m \angle 3 = 120^{\circ}, \angle 1 \cong \angle 4,$ $\angle 3 \cong \angle 4$

PROVE $m \angle 1 = 120^{\circ}$


Plan for Proof First show that $\angle 1 \cong \angle 3$. Then use transitivity to show that $m \angle 1 = 120^{\circ}$.

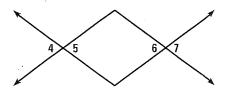
25. GIVEN \triangleright $\angle QVW$ and $\angle RWV$ are supplementary

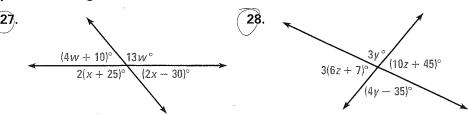
PROVE $\rightarrow \angle QVP \cong \angle RWV$


Plan for Proof First show that $\angle QVP$ and $\angle QVW$ are supplementary. Then show that $\angle QVP \cong \angle RWV$.

24. GIVEN \Rightarrow $\angle 3$ and $\angle 2$ are complementary, $m \angle 1 + m \angle 2 = 90^{\circ}$

PROVE \triangleright $\angle 3 \cong \angle 1$


Plan for Proof First show that $\angle 1$ and $\angle 2$ are complementary. Then show that $\angle 3 \cong \angle 1$.


26. GIVEN $> \angle 5 \cong \angle 6$

PROVE ► ∠4 ≅ ∠7

Plan for Proof First show that $\angle 4 \cong \angle 5$ and $\angle 6 \cong \angle 7$. Then use transitivity to show that $\angle 4 \cong \angle 7$.

USING ALGEBRA In Exercises 27 and 28, solve for each variable. Explain your reasoning.

